Urban Stormwater Management Model and Tools for Designing Stormwater Management of Green Infrastructure Practices

H. Haris, Ming Fai Chow, Fathoni Usman, Lariyah Mohd Sidek, Z. A. Roseli, M. D. Norlida

Research output: Contribution to journalConference article

5 Citations (Scopus)

Abstract

Urbanization is growing rapidly in Malaysia. Rapid urbanization has known to have several negative impacts towards hydrological cycle due to decreasing of pervious area and deterioration of water quality in stormwater runoff. One of the negative impacts of urbanization is the congestion of the stormwater drainage system and this situation leading to flash flood problem and water quality degradation. There are many urban stormwater management softwares available in the market such as Storm Water Drainage System design and analysis program (DRAINS), Urban Drainage and Sewer Model (MOUSE), InfoWorks River Simulation (InfoWork RS), Hydrological Simulation Program-Fortran (HSPF), Distributed Routing Rainfall-Runoff Model (DR3M), Storm Water Management Model (SWMM), XP Storm Water Management Model (XPSWMM), MIKE-SWMM, Quality-Quantity Simulators (QQS), Storage, Treatment, Overflow, Runoff Model (STORM), and Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). In this paper, we are going to discuss briefly about several softwares and their functionality, accessibility, characteristics and components in the quantity analysis of the hydrological design software and compare it with MSMA Design Aid and Database. Green Infrastructure (GI) is one of the main topics that has widely been discussed all over the world. Every development in the urban area is related to GI. GI can be defined as green area build in the develop area such as forest, park, wetland or floodway. The role of GI is to improve life standard such as water filtration or flood control. Among the twenty models that have been compared to MSMA SME, ten models were selected to conduct a comprehensive review for this study. These are known to be widely accepted by water resource researchers. These ten tools are further classified into three major categories as models that address the stormwater management ability of GI in terms of quantity and quality, models that have the capability of conducting the economic analysis of GI and models that can address both stormwater management and economic aspects together.

Original languageEnglish
Article number012022
JournalIOP Conference Series: Earth and Environmental Science
Volume32
Issue number1
DOIs
Publication statusPublished - 19 Apr 2016
Event2nd International Conference on Advances in Renewable Energy and Technologies, ICARET 2016 - Putrajaya, Malaysia
Duration: 23 Feb 201625 Feb 2016

Fingerprint

stormwater
infrastructure
water management
urbanization
runoff
software
water quality
urban drainage
flash flood
hydrological cycle
flood control
congestion
economic analysis
routing
accessibility
simulation
simulator
aid
urban area
water resource

All Science Journal Classification (ASJC) codes

  • Environmental Science(all)
  • Earth and Planetary Sciences(all)

Cite this

@article{5ab1d2dc5e84494f9f6138b7d96cd399,
title = "Urban Stormwater Management Model and Tools for Designing Stormwater Management of Green Infrastructure Practices",
abstract = "Urbanization is growing rapidly in Malaysia. Rapid urbanization has known to have several negative impacts towards hydrological cycle due to decreasing of pervious area and deterioration of water quality in stormwater runoff. One of the negative impacts of urbanization is the congestion of the stormwater drainage system and this situation leading to flash flood problem and water quality degradation. There are many urban stormwater management softwares available in the market such as Storm Water Drainage System design and analysis program (DRAINS), Urban Drainage and Sewer Model (MOUSE), InfoWorks River Simulation (InfoWork RS), Hydrological Simulation Program-Fortran (HSPF), Distributed Routing Rainfall-Runoff Model (DR3M), Storm Water Management Model (SWMM), XP Storm Water Management Model (XPSWMM), MIKE-SWMM, Quality-Quantity Simulators (QQS), Storage, Treatment, Overflow, Runoff Model (STORM), and Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). In this paper, we are going to discuss briefly about several softwares and their functionality, accessibility, characteristics and components in the quantity analysis of the hydrological design software and compare it with MSMA Design Aid and Database. Green Infrastructure (GI) is one of the main topics that has widely been discussed all over the world. Every development in the urban area is related to GI. GI can be defined as green area build in the develop area such as forest, park, wetland or floodway. The role of GI is to improve life standard such as water filtration or flood control. Among the twenty models that have been compared to MSMA SME, ten models were selected to conduct a comprehensive review for this study. These are known to be widely accepted by water resource researchers. These ten tools are further classified into three major categories as models that address the stormwater management ability of GI in terms of quantity and quality, models that have the capability of conducting the economic analysis of GI and models that can address both stormwater management and economic aspects together.",
author = "H. Haris and Chow, {Ming Fai} and Fathoni Usman and {Mohd Sidek}, Lariyah and Roseli, {Z. A.} and Norlida, {M. D.}",
year = "2016",
month = "4",
day = "19",
doi = "10.1088/1755-1315/32/1/012022",
language = "English",
volume = "32",
journal = "IOP Conference Series: Earth and Environmental Science",
issn = "1755-1307",
publisher = "IOP Publishing Ltd.",
number = "1",

}

Urban Stormwater Management Model and Tools for Designing Stormwater Management of Green Infrastructure Practices. / Haris, H.; Chow, Ming Fai; Usman, Fathoni; Mohd Sidek, Lariyah; Roseli, Z. A.; Norlida, M. D.

In: IOP Conference Series: Earth and Environmental Science, Vol. 32, No. 1, 012022, 19.04.2016.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Urban Stormwater Management Model and Tools for Designing Stormwater Management of Green Infrastructure Practices

AU - Haris, H.

AU - Chow, Ming Fai

AU - Usman, Fathoni

AU - Mohd Sidek, Lariyah

AU - Roseli, Z. A.

AU - Norlida, M. D.

PY - 2016/4/19

Y1 - 2016/4/19

N2 - Urbanization is growing rapidly in Malaysia. Rapid urbanization has known to have several negative impacts towards hydrological cycle due to decreasing of pervious area and deterioration of water quality in stormwater runoff. One of the negative impacts of urbanization is the congestion of the stormwater drainage system and this situation leading to flash flood problem and water quality degradation. There are many urban stormwater management softwares available in the market such as Storm Water Drainage System design and analysis program (DRAINS), Urban Drainage and Sewer Model (MOUSE), InfoWorks River Simulation (InfoWork RS), Hydrological Simulation Program-Fortran (HSPF), Distributed Routing Rainfall-Runoff Model (DR3M), Storm Water Management Model (SWMM), XP Storm Water Management Model (XPSWMM), MIKE-SWMM, Quality-Quantity Simulators (QQS), Storage, Treatment, Overflow, Runoff Model (STORM), and Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). In this paper, we are going to discuss briefly about several softwares and their functionality, accessibility, characteristics and components in the quantity analysis of the hydrological design software and compare it with MSMA Design Aid and Database. Green Infrastructure (GI) is one of the main topics that has widely been discussed all over the world. Every development in the urban area is related to GI. GI can be defined as green area build in the develop area such as forest, park, wetland or floodway. The role of GI is to improve life standard such as water filtration or flood control. Among the twenty models that have been compared to MSMA SME, ten models were selected to conduct a comprehensive review for this study. These are known to be widely accepted by water resource researchers. These ten tools are further classified into three major categories as models that address the stormwater management ability of GI in terms of quantity and quality, models that have the capability of conducting the economic analysis of GI and models that can address both stormwater management and economic aspects together.

AB - Urbanization is growing rapidly in Malaysia. Rapid urbanization has known to have several negative impacts towards hydrological cycle due to decreasing of pervious area and deterioration of water quality in stormwater runoff. One of the negative impacts of urbanization is the congestion of the stormwater drainage system and this situation leading to flash flood problem and water quality degradation. There are many urban stormwater management softwares available in the market such as Storm Water Drainage System design and analysis program (DRAINS), Urban Drainage and Sewer Model (MOUSE), InfoWorks River Simulation (InfoWork RS), Hydrological Simulation Program-Fortran (HSPF), Distributed Routing Rainfall-Runoff Model (DR3M), Storm Water Management Model (SWMM), XP Storm Water Management Model (XPSWMM), MIKE-SWMM, Quality-Quantity Simulators (QQS), Storage, Treatment, Overflow, Runoff Model (STORM), and Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). In this paper, we are going to discuss briefly about several softwares and their functionality, accessibility, characteristics and components in the quantity analysis of the hydrological design software and compare it with MSMA Design Aid and Database. Green Infrastructure (GI) is one of the main topics that has widely been discussed all over the world. Every development in the urban area is related to GI. GI can be defined as green area build in the develop area such as forest, park, wetland or floodway. The role of GI is to improve life standard such as water filtration or flood control. Among the twenty models that have been compared to MSMA SME, ten models were selected to conduct a comprehensive review for this study. These are known to be widely accepted by water resource researchers. These ten tools are further classified into three major categories as models that address the stormwater management ability of GI in terms of quantity and quality, models that have the capability of conducting the economic analysis of GI and models that can address both stormwater management and economic aspects together.

UR - http://www.scopus.com/inward/record.url?scp=84966550766&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966550766&partnerID=8YFLogxK

U2 - 10.1088/1755-1315/32/1/012022

DO - 10.1088/1755-1315/32/1/012022

M3 - Conference article

VL - 32

JO - IOP Conference Series: Earth and Environmental Science

JF - IOP Conference Series: Earth and Environmental Science

SN - 1755-1307

IS - 1

M1 - 012022

ER -