Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy

R. K. Rajkumar, Vigna Kumaran Ramachandaramurthy, B. L. Yong, D. B. Chia

Research output: Contribution to journalArticle

99 Citations (Scopus)

Abstract

High cost of renewable energy systems has led to its slow adoption in many countries. Hence, it is vital to select an appropriate size of the system in order to reduce the cost and excess energy produced as well as to maximize the available resources. The sizing of hybrid system must satisfy the LPSP (Loss of Power Supply Probability) which determines the ability of the system to meet the load requirements. Once the lowest configurations are determined, the cost of the system must then be taken into consideration to determine the system with the lowest cost. The optimization methodology proposed in this paper uses the ANFIS (Adaptive Neuro-Fuzzy Inference System) to model the PV and wind sources. The algorithm developed is compared to HOMER (Hybrid Optimization Model for Electric Renewables) and HOGA (Hybrid Optimization by Genetic Algorithms) software and the results demonstrate an accuracy of 96% for PV and wind. The optimized system is simulated in PSCAD/EMTDC and the results show that low excess energy is achieved. The optimized system is also able to supply power to the load without any renewable sources for a longer period, while conforming to the desired LPSP.

Original languageEnglish
Pages (from-to)5148-5153
Number of pages6
JournalEnergy
Volume36
Issue number8
DOIs
Publication statusPublished - 01 Jan 2011

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Pollution
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Cite this