Scavenging carbon deposition on alumina supported cobalt catalyst during renewable hydrogen-rich syngas production by methane dry reforming using artificial intelligence modeling technique

May Ali Alsaffar, Bamidele Victor Ayodele, Siti Indati Mustapa

Research output: Contribution to journalArticle

Abstract

Methane dry reforming is a thermo-catalytical process that utilizes two principal components of greenhouse gases for the production of hydrogen-rich syngas. One major shortcoming of the methane dry reforming as a potential route for renewable hydrogen-rich syngas production is catalyst deactivation through carbon deposition. In this study, an artificial neural network approach was employed for predictive modeling of the deactivation of alumina supported cobalt catalyst used to catalyze methane dry reforming reaction. The effect of methane/carbon dioxide (CH4/CO2) ratio, reaction temperature and nitrogen (N2) flowrate on the carbon deposition were investigated using full factorial experimental design. Two artificial neural network modeling techniques namely multilayer perceptron neural network (MLPNN) and radial basis function (RBFNN) were employed for the prediction of carbon deposition per gram catalyst using data obtained from 170 experimental runs. The hidden neurons were optimized to obtain 16 and 20 units respectively for the MLPNN and the RBFNN resulting in the network architecture of 3, 16, 1 and 3, 20, 1, respectively. The statistical analysis of the network performance resulted in mean standard error (MSE) values of 0.048 and 0.00285 for training the MLPNN algorithm above and below stoichiometric conditions with corresponding R2 values of 0.945 and 0.965. While MSE values of 0.0073 and 0.00015 were obtained for the training of the RBFNN algorithm above and below stoichiometric conditions with R2 of 0.987 for both cases. Base on the statistical analysis the RBFNN model was adjudicated as a better predictor of the carbon deposition during the hydrogen-rich syngas production than the MLPNN model. The three input parameters were found to have varying levels of importance in the prediction of the carbon deposition. The reaction temperature was observed to be the most important parameters that influence the prediction of carbon deposition above stochiometric while CH4/CO2 was the most important parameters that influence the prediction of carbon deposition below stoichiometric conditions.

Original languageEnglish
Article number119168
JournalJournal of Cleaner Production
Volume247
DOIs
Publication statusPublished - 20 Feb 2020

Fingerprint

artificial intelligence
Scavenging
Reforming reactions
cobalt
aluminum oxide
Artificial intelligence
Cobalt
Methane
Alumina
methane
catalyst
hydrogen
Hydrogen
Catalysts
Multilayer neural networks
Carbon
Neural networks
carbon
modeling
prediction

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Environmental Science(all)
  • Strategy and Management
  • Industrial and Manufacturing Engineering

Cite this

@article{9ec62e98b96f43ff802d9377884379f8,
title = "Scavenging carbon deposition on alumina supported cobalt catalyst during renewable hydrogen-rich syngas production by methane dry reforming using artificial intelligence modeling technique",
abstract = "Methane dry reforming is a thermo-catalytical process that utilizes two principal components of greenhouse gases for the production of hydrogen-rich syngas. One major shortcoming of the methane dry reforming as a potential route for renewable hydrogen-rich syngas production is catalyst deactivation through carbon deposition. In this study, an artificial neural network approach was employed for predictive modeling of the deactivation of alumina supported cobalt catalyst used to catalyze methane dry reforming reaction. The effect of methane/carbon dioxide (CH4/CO2) ratio, reaction temperature and nitrogen (N2) flowrate on the carbon deposition were investigated using full factorial experimental design. Two artificial neural network modeling techniques namely multilayer perceptron neural network (MLPNN) and radial basis function (RBFNN) were employed for the prediction of carbon deposition per gram catalyst using data obtained from 170 experimental runs. The hidden neurons were optimized to obtain 16 and 20 units respectively for the MLPNN and the RBFNN resulting in the network architecture of 3, 16, 1 and 3, 20, 1, respectively. The statistical analysis of the network performance resulted in mean standard error (MSE) values of 0.048 and 0.00285 for training the MLPNN algorithm above and below stoichiometric conditions with corresponding R2 values of 0.945 and 0.965. While MSE values of 0.0073 and 0.00015 were obtained for the training of the RBFNN algorithm above and below stoichiometric conditions with R2 of 0.987 for both cases. Base on the statistical analysis the RBFNN model was adjudicated as a better predictor of the carbon deposition during the hydrogen-rich syngas production than the MLPNN model. The three input parameters were found to have varying levels of importance in the prediction of the carbon deposition. The reaction temperature was observed to be the most important parameters that influence the prediction of carbon deposition above stochiometric while CH4/CO2 was the most important parameters that influence the prediction of carbon deposition below stoichiometric conditions.",
author = "Alsaffar, {May Ali} and Ayodele, {Bamidele Victor} and Mustapa, {Siti Indati}",
year = "2020",
month = "2",
day = "20",
doi = "10.1016/j.jclepro.2019.119168",
language = "English",
volume = "247",
journal = "Journal of Cleaner Production",
issn = "0959-6526",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Scavenging carbon deposition on alumina supported cobalt catalyst during renewable hydrogen-rich syngas production by methane dry reforming using artificial intelligence modeling technique

AU - Alsaffar, May Ali

AU - Ayodele, Bamidele Victor

AU - Mustapa, Siti Indati

PY - 2020/2/20

Y1 - 2020/2/20

N2 - Methane dry reforming is a thermo-catalytical process that utilizes two principal components of greenhouse gases for the production of hydrogen-rich syngas. One major shortcoming of the methane dry reforming as a potential route for renewable hydrogen-rich syngas production is catalyst deactivation through carbon deposition. In this study, an artificial neural network approach was employed for predictive modeling of the deactivation of alumina supported cobalt catalyst used to catalyze methane dry reforming reaction. The effect of methane/carbon dioxide (CH4/CO2) ratio, reaction temperature and nitrogen (N2) flowrate on the carbon deposition were investigated using full factorial experimental design. Two artificial neural network modeling techniques namely multilayer perceptron neural network (MLPNN) and radial basis function (RBFNN) were employed for the prediction of carbon deposition per gram catalyst using data obtained from 170 experimental runs. The hidden neurons were optimized to obtain 16 and 20 units respectively for the MLPNN and the RBFNN resulting in the network architecture of 3, 16, 1 and 3, 20, 1, respectively. The statistical analysis of the network performance resulted in mean standard error (MSE) values of 0.048 and 0.00285 for training the MLPNN algorithm above and below stoichiometric conditions with corresponding R2 values of 0.945 and 0.965. While MSE values of 0.0073 and 0.00015 were obtained for the training of the RBFNN algorithm above and below stoichiometric conditions with R2 of 0.987 for both cases. Base on the statistical analysis the RBFNN model was adjudicated as a better predictor of the carbon deposition during the hydrogen-rich syngas production than the MLPNN model. The three input parameters were found to have varying levels of importance in the prediction of the carbon deposition. The reaction temperature was observed to be the most important parameters that influence the prediction of carbon deposition above stochiometric while CH4/CO2 was the most important parameters that influence the prediction of carbon deposition below stoichiometric conditions.

AB - Methane dry reforming is a thermo-catalytical process that utilizes two principal components of greenhouse gases for the production of hydrogen-rich syngas. One major shortcoming of the methane dry reforming as a potential route for renewable hydrogen-rich syngas production is catalyst deactivation through carbon deposition. In this study, an artificial neural network approach was employed for predictive modeling of the deactivation of alumina supported cobalt catalyst used to catalyze methane dry reforming reaction. The effect of methane/carbon dioxide (CH4/CO2) ratio, reaction temperature and nitrogen (N2) flowrate on the carbon deposition were investigated using full factorial experimental design. Two artificial neural network modeling techniques namely multilayer perceptron neural network (MLPNN) and radial basis function (RBFNN) were employed for the prediction of carbon deposition per gram catalyst using data obtained from 170 experimental runs. The hidden neurons were optimized to obtain 16 and 20 units respectively for the MLPNN and the RBFNN resulting in the network architecture of 3, 16, 1 and 3, 20, 1, respectively. The statistical analysis of the network performance resulted in mean standard error (MSE) values of 0.048 and 0.00285 for training the MLPNN algorithm above and below stoichiometric conditions with corresponding R2 values of 0.945 and 0.965. While MSE values of 0.0073 and 0.00015 were obtained for the training of the RBFNN algorithm above and below stoichiometric conditions with R2 of 0.987 for both cases. Base on the statistical analysis the RBFNN model was adjudicated as a better predictor of the carbon deposition during the hydrogen-rich syngas production than the MLPNN model. The three input parameters were found to have varying levels of importance in the prediction of the carbon deposition. The reaction temperature was observed to be the most important parameters that influence the prediction of carbon deposition above stochiometric while CH4/CO2 was the most important parameters that influence the prediction of carbon deposition below stoichiometric conditions.

UR - http://www.scopus.com/inward/record.url?scp=85075445698&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85075445698&partnerID=8YFLogxK

U2 - 10.1016/j.jclepro.2019.119168

DO - 10.1016/j.jclepro.2019.119168

M3 - Article

AN - SCOPUS:85075445698

VL - 247

JO - Journal of Cleaner Production

JF - Journal of Cleaner Production

SN - 0959-6526

M1 - 119168

ER -