Performance comparison of hybrid and non-hybrid contact mode triboelectric energy harvester

S. Rao, Hanim Salleh, M. S. Iskandar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Energy harvesting technology has been developed over the years due to the demand for low power electronic applications. One of the types of energy harvester is the triboelectric transduction. Triboelectric energy harvesters have been developed and widely being adopted in this energy harvester technology. Many factors need to be considered while applying this mechanism such as materials, surface area and roughness, the gap between two layers and input parameters. In designing the triboelectric energy harvester, there are four types of modes namely contact mode, sliding mode, free standing mode and single electrode. This paper demonstrated a feasible design of cantilevered structured for non-hybrid and hybrid triboelectric energy harvester mechanism to compare the effectiveness of the output between two different working mechanisms as well as parameters such as the effect of materials, the effect of mass at different conditions. A cantilevered structure triboelectric nanogenerator (TENG) been demonstrated and studied the effect of different input frequencies and load resistance. A maximum peak voltage of 2.118 V at 40 Hz. Further strategies to improve the performance of the harvester can also be done and can be applied to low power electronic applications.

Original languageEnglish
Title of host publicationGreen Design and Manufacture
Subtitle of host publicationAdvanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018
EditorsMuhammad Faheem Bin Mohd Tahir, Romisuhani Ahmad, Mohd Nasir Bin Mat Saad, Mohd Fathullah Bin Ghazli, Mohd Mustafa Al-Bakri Abdullah, Shayfull Zamree Bin Abd. Rahim, Liyana Binti Jamaludin
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735417526
DOIs
Publication statusPublished - 09 Nov 2018
Event4th International Conference on Green Design and Manufacture 2018, IConGDM 2018 - Ho Chi Minh, Viet Nam
Duration: 29 Apr 201830 Apr 2018

Publication series

NameAIP Conference Proceedings
Volume2030
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other4th International Conference on Green Design and Manufacture 2018, IConGDM 2018
CountryViet Nam
CityHo Chi Minh
Period29/04/1830/04/18

Fingerprint

energy technology
energy
electronics
sliding
roughness
electrodes
output
electric potential

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

Rao, S., Salleh, H., & Iskandar, M. S. (2018). Performance comparison of hybrid and non-hybrid contact mode triboelectric energy harvester. In M. F. B. M. Tahir, R. Ahmad, M. N. B. M. Saad, M. F. B. Ghazli, M. M. A-B. Abdullah, S. Z. B. A. Rahim, & L. B. Jamaludin (Eds.), Green Design and Manufacture: Advanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018 [020034] (AIP Conference Proceedings; Vol. 2030). American Institute of Physics Inc.. https://doi.org/10.1063/1.5066675
Rao, S. ; Salleh, Hanim ; Iskandar, M. S. / Performance comparison of hybrid and non-hybrid contact mode triboelectric energy harvester. Green Design and Manufacture: Advanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018. editor / Muhammad Faheem Bin Mohd Tahir ; Romisuhani Ahmad ; Mohd Nasir Bin Mat Saad ; Mohd Fathullah Bin Ghazli ; Mohd Mustafa Al-Bakri Abdullah ; Shayfull Zamree Bin Abd. Rahim ; Liyana Binti Jamaludin. American Institute of Physics Inc., 2018. (AIP Conference Proceedings).
@inproceedings{66b07af684b54675aa59194fc16ecb30,
title = "Performance comparison of hybrid and non-hybrid contact mode triboelectric energy harvester",
abstract = "Energy harvesting technology has been developed over the years due to the demand for low power electronic applications. One of the types of energy harvester is the triboelectric transduction. Triboelectric energy harvesters have been developed and widely being adopted in this energy harvester technology. Many factors need to be considered while applying this mechanism such as materials, surface area and roughness, the gap between two layers and input parameters. In designing the triboelectric energy harvester, there are four types of modes namely contact mode, sliding mode, free standing mode and single electrode. This paper demonstrated a feasible design of cantilevered structured for non-hybrid and hybrid triboelectric energy harvester mechanism to compare the effectiveness of the output between two different working mechanisms as well as parameters such as the effect of materials, the effect of mass at different conditions. A cantilevered structure triboelectric nanogenerator (TENG) been demonstrated and studied the effect of different input frequencies and load resistance. A maximum peak voltage of 2.118 V at 40 Hz. Further strategies to improve the performance of the harvester can also be done and can be applied to low power electronic applications.",
author = "S. Rao and Hanim Salleh and Iskandar, {M. S.}",
year = "2018",
month = "11",
day = "9",
doi = "10.1063/1.5066675",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Tahir, {Muhammad Faheem Bin Mohd} and Romisuhani Ahmad and Saad, {Mohd Nasir Bin Mat} and Ghazli, {Mohd Fathullah Bin} and Abdullah, {Mohd Mustafa Al-Bakri} and Rahim, {Shayfull Zamree Bin Abd.} and Jamaludin, {Liyana Binti}",
booktitle = "Green Design and Manufacture",

}

Rao, S, Salleh, H & Iskandar, MS 2018, Performance comparison of hybrid and non-hybrid contact mode triboelectric energy harvester. in MFBM Tahir, R Ahmad, MNBM Saad, MFB Ghazli, MMA-B Abdullah, SZBA Rahim & LB Jamaludin (eds), Green Design and Manufacture: Advanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018., 020034, AIP Conference Proceedings, vol. 2030, American Institute of Physics Inc., 4th International Conference on Green Design and Manufacture 2018, IConGDM 2018, Ho Chi Minh, Viet Nam, 29/04/18. https://doi.org/10.1063/1.5066675

Performance comparison of hybrid and non-hybrid contact mode triboelectric energy harvester. / Rao, S.; Salleh, Hanim; Iskandar, M. S.

Green Design and Manufacture: Advanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018. ed. / Muhammad Faheem Bin Mohd Tahir; Romisuhani Ahmad; Mohd Nasir Bin Mat Saad; Mohd Fathullah Bin Ghazli; Mohd Mustafa Al-Bakri Abdullah; Shayfull Zamree Bin Abd. Rahim; Liyana Binti Jamaludin. American Institute of Physics Inc., 2018. 020034 (AIP Conference Proceedings; Vol. 2030).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Performance comparison of hybrid and non-hybrid contact mode triboelectric energy harvester

AU - Rao, S.

AU - Salleh, Hanim

AU - Iskandar, M. S.

PY - 2018/11/9

Y1 - 2018/11/9

N2 - Energy harvesting technology has been developed over the years due to the demand for low power electronic applications. One of the types of energy harvester is the triboelectric transduction. Triboelectric energy harvesters have been developed and widely being adopted in this energy harvester technology. Many factors need to be considered while applying this mechanism such as materials, surface area and roughness, the gap between two layers and input parameters. In designing the triboelectric energy harvester, there are four types of modes namely contact mode, sliding mode, free standing mode and single electrode. This paper demonstrated a feasible design of cantilevered structured for non-hybrid and hybrid triboelectric energy harvester mechanism to compare the effectiveness of the output between two different working mechanisms as well as parameters such as the effect of materials, the effect of mass at different conditions. A cantilevered structure triboelectric nanogenerator (TENG) been demonstrated and studied the effect of different input frequencies and load resistance. A maximum peak voltage of 2.118 V at 40 Hz. Further strategies to improve the performance of the harvester can also be done and can be applied to low power electronic applications.

AB - Energy harvesting technology has been developed over the years due to the demand for low power electronic applications. One of the types of energy harvester is the triboelectric transduction. Triboelectric energy harvesters have been developed and widely being adopted in this energy harvester technology. Many factors need to be considered while applying this mechanism such as materials, surface area and roughness, the gap between two layers and input parameters. In designing the triboelectric energy harvester, there are four types of modes namely contact mode, sliding mode, free standing mode and single electrode. This paper demonstrated a feasible design of cantilevered structured for non-hybrid and hybrid triboelectric energy harvester mechanism to compare the effectiveness of the output between two different working mechanisms as well as parameters such as the effect of materials, the effect of mass at different conditions. A cantilevered structure triboelectric nanogenerator (TENG) been demonstrated and studied the effect of different input frequencies and load resistance. A maximum peak voltage of 2.118 V at 40 Hz. Further strategies to improve the performance of the harvester can also be done and can be applied to low power electronic applications.

UR - http://www.scopus.com/inward/record.url?scp=85057244111&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85057244111&partnerID=8YFLogxK

U2 - 10.1063/1.5066675

DO - 10.1063/1.5066675

M3 - Conference contribution

T3 - AIP Conference Proceedings

BT - Green Design and Manufacture

A2 - Tahir, Muhammad Faheem Bin Mohd

A2 - Ahmad, Romisuhani

A2 - Saad, Mohd Nasir Bin Mat

A2 - Ghazli, Mohd Fathullah Bin

A2 - Abdullah, Mohd Mustafa Al-Bakri

A2 - Rahim, Shayfull Zamree Bin Abd.

A2 - Jamaludin, Liyana Binti

PB - American Institute of Physics Inc.

ER -

Rao S, Salleh H, Iskandar MS. Performance comparison of hybrid and non-hybrid contact mode triboelectric energy harvester. In Tahir MFBM, Ahmad R, Saad MNBM, Ghazli MFB, Abdullah MMA-B, Rahim SZBA, Jamaludin LB, editors, Green Design and Manufacture: Advanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018. American Institute of Physics Inc. 2018. 020034. (AIP Conference Proceedings). https://doi.org/10.1063/1.5066675