Mathematical modeling for longitudinal displacement of a straight continuously welded railway track and its numerical implementation

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)


A mathematical model of the longitudinal flexibility of a continuously welded railway track and the methodology for the analysis of the longitudinal displacement of rails under the effects of passing trains is developed to investigate the longitudinal behavior of rails. The purpose of this analysis is to explore the changes of longitudinal stress distribution in the rails due to mechanical loading applied by a travelling train. A half track system is used to derive the equations required to obtain the magnitude of deflection and force of rails and these values are scaled to produce the displacement pattern using the method of superposition. The mathematical model is translated into MATLAB and validation of the program is verified through comparisons of displacement patterns generated by a computer software LONGIN. Analysis of a straight track due to train braking was performed over a track length of 1000 m. The longitudinal displacement obtained showed that maximum longitudinal displacement occur in the middle of the track at the distance of 570 m which is in direct agreement with the published result.

Original languageEnglish
Title of host publicationFracture and Strength of Solids VII
Number of pages6
Publication statusPublished - 04 Feb 2011
Event8th International Conference on Fracture and Strength of Solids 2010, FEOFS2010 - Kuala Lumpur, Malaysia
Duration: 07 Jun 201009 Jun 2010

Publication series

NameKey Engineering Materials
ISSN (Print)1013-9826


Other8th International Conference on Fracture and Strength of Solids 2010, FEOFS2010
CityKuala Lumpur


All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Cite this