Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country

Nazia Hossain, Juliana Zaini, T.m. Indra Mahlia

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Overuse of petroleum and ongoing carbon-di-oxide (CO2) rise in the air of Brunei Darussalam has been emerged as a major environmental concern in this country. To resolve this issue, a comprehensive life cycle assessment (LCA) of alternative biofuel, bioethanol production from microalgae was demanded for realistic implementation. Therefore, LCA of bioethanol production from microalgae in terms of CO2 emission and energy balance was investigated based on the scenario of industrial-scale in Brunei Darussalam. This study demonstrated that 220 tons microalgae biomass was cultivated on 6 ha offshore lands for commercial bioethanol generation. The annual outcome of this commercial bioethanol plant has revealed net CO2 balance 218.86 ton. From the energy perspective, this study manifested itself as favourable with net energy ratio, 0.45 and net energy balance, −2749.6 GJ y−1. Apart from CO2 balance and energy generation aspect, the project demanded low water and land footprints. For photobioreactor cultivation, water and land footprints were 2 m3 GJ−1 and 2 m2 GJ−1, respectively as well as for open pond approach, they were 87 m3 GJ−1 and 13 m2 GJ−1, respectively. The project also presented microalgae growth supplements (phosphorus and nitrogen) accumulation possibilities from wastewater of manure and industries which is another positive aspect for benign environment. Overall, the commercial plant presented low CO2 emission, low land and water demand for microalgae cultivation, alternative eco-friendly and cheaper nutrients sources, quite high energy generation with main product and by-products. Thus, this study projected positive impact on energy and environmental aspects of microalgae-to-bioethanol conversion.

Original languageEnglish
Article number109371
JournalRenewable and Sustainable Energy Reviews
Volume115
DOIs
Publication statusPublished - 01 Nov 2019

Fingerprint

Bioethanol
Energy balance
Sensitivity analysis
Life cycle
Photobioreactors
Water
Manures
Ponds
Biofuels
Nutrients
Byproducts
Phosphorus
Biomass
Wastewater
Crude oil
Nitrogen
Carbon
Oxides
Air
Industry

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment

Cite this

@article{2cb7aeb15206412fbd5e61eb4c362676,
title = "Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country",
abstract = "Overuse of petroleum and ongoing carbon-di-oxide (CO2) rise in the air of Brunei Darussalam has been emerged as a major environmental concern in this country. To resolve this issue, a comprehensive life cycle assessment (LCA) of alternative biofuel, bioethanol production from microalgae was demanded for realistic implementation. Therefore, LCA of bioethanol production from microalgae in terms of CO2 emission and energy balance was investigated based on the scenario of industrial-scale in Brunei Darussalam. This study demonstrated that 220 tons microalgae biomass was cultivated on 6 ha offshore lands for commercial bioethanol generation. The annual outcome of this commercial bioethanol plant has revealed net CO2 balance 218.86 ton. From the energy perspective, this study manifested itself as favourable with net energy ratio, 0.45 and net energy balance, −2749.6 GJ y−1. Apart from CO2 balance and energy generation aspect, the project demanded low water and land footprints. For photobioreactor cultivation, water and land footprints were 2 m3 GJ−1 and 2 m2 GJ−1, respectively as well as for open pond approach, they were 87 m3 GJ−1 and 13 m2 GJ−1, respectively. The project also presented microalgae growth supplements (phosphorus and nitrogen) accumulation possibilities from wastewater of manure and industries which is another positive aspect for benign environment. Overall, the commercial plant presented low CO2 emission, low land and water demand for microalgae cultivation, alternative eco-friendly and cheaper nutrients sources, quite high energy generation with main product and by-products. Thus, this study projected positive impact on energy and environmental aspects of microalgae-to-bioethanol conversion.",
author = "Nazia Hossain and Juliana Zaini and Mahlia, {T.m. Indra}",
year = "2019",
month = "11",
day = "1",
doi = "10.1016/j.rser.2019.109371",
language = "English",
volume = "115",
journal = "Renewable and Sustainable Energy Reviews",
issn = "1364-0321",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country

AU - Hossain, Nazia

AU - Zaini, Juliana

AU - Mahlia, T.m. Indra

PY - 2019/11/1

Y1 - 2019/11/1

N2 - Overuse of petroleum and ongoing carbon-di-oxide (CO2) rise in the air of Brunei Darussalam has been emerged as a major environmental concern in this country. To resolve this issue, a comprehensive life cycle assessment (LCA) of alternative biofuel, bioethanol production from microalgae was demanded for realistic implementation. Therefore, LCA of bioethanol production from microalgae in terms of CO2 emission and energy balance was investigated based on the scenario of industrial-scale in Brunei Darussalam. This study demonstrated that 220 tons microalgae biomass was cultivated on 6 ha offshore lands for commercial bioethanol generation. The annual outcome of this commercial bioethanol plant has revealed net CO2 balance 218.86 ton. From the energy perspective, this study manifested itself as favourable with net energy ratio, 0.45 and net energy balance, −2749.6 GJ y−1. Apart from CO2 balance and energy generation aspect, the project demanded low water and land footprints. For photobioreactor cultivation, water and land footprints were 2 m3 GJ−1 and 2 m2 GJ−1, respectively as well as for open pond approach, they were 87 m3 GJ−1 and 13 m2 GJ−1, respectively. The project also presented microalgae growth supplements (phosphorus and nitrogen) accumulation possibilities from wastewater of manure and industries which is another positive aspect for benign environment. Overall, the commercial plant presented low CO2 emission, low land and water demand for microalgae cultivation, alternative eco-friendly and cheaper nutrients sources, quite high energy generation with main product and by-products. Thus, this study projected positive impact on energy and environmental aspects of microalgae-to-bioethanol conversion.

AB - Overuse of petroleum and ongoing carbon-di-oxide (CO2) rise in the air of Brunei Darussalam has been emerged as a major environmental concern in this country. To resolve this issue, a comprehensive life cycle assessment (LCA) of alternative biofuel, bioethanol production from microalgae was demanded for realistic implementation. Therefore, LCA of bioethanol production from microalgae in terms of CO2 emission and energy balance was investigated based on the scenario of industrial-scale in Brunei Darussalam. This study demonstrated that 220 tons microalgae biomass was cultivated on 6 ha offshore lands for commercial bioethanol generation. The annual outcome of this commercial bioethanol plant has revealed net CO2 balance 218.86 ton. From the energy perspective, this study manifested itself as favourable with net energy ratio, 0.45 and net energy balance, −2749.6 GJ y−1. Apart from CO2 balance and energy generation aspect, the project demanded low water and land footprints. For photobioreactor cultivation, water and land footprints were 2 m3 GJ−1 and 2 m2 GJ−1, respectively as well as for open pond approach, they were 87 m3 GJ−1 and 13 m2 GJ−1, respectively. The project also presented microalgae growth supplements (phosphorus and nitrogen) accumulation possibilities from wastewater of manure and industries which is another positive aspect for benign environment. Overall, the commercial plant presented low CO2 emission, low land and water demand for microalgae cultivation, alternative eco-friendly and cheaper nutrients sources, quite high energy generation with main product and by-products. Thus, this study projected positive impact on energy and environmental aspects of microalgae-to-bioethanol conversion.

UR - http://www.scopus.com/inward/record.url?scp=85071967316&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071967316&partnerID=8YFLogxK

U2 - 10.1016/j.rser.2019.109371

DO - 10.1016/j.rser.2019.109371

M3 - Article

AN - SCOPUS:85071967316

VL - 115

JO - Renewable and Sustainable Energy Reviews

JF - Renewable and Sustainable Energy Reviews

SN - 1364-0321

M1 - 109371

ER -