Intensification of Reutealis trisperma biodiesel production using infrared radiation: Simulation, optimisation and validation

A. S. Silitonga, T.m. Indra Mahlia, F. Kusumo, S. Dharma, A. H. Sebayang, R. W. Sembiring, A. H. Shamsuddin

Research output: Contribution to journalArticle

38 Citations (Scopus)


Biodiesel production using intensification of methyl ester is becoming very important due to its considerably lower energy requirement and shorter reaction time in obtaining feedstock oil. The present study investigated utilisation of Reutealis trisperma oil to produce biodiesel. A Box-Behnken experimental design was used to optimise the transesterification process. The process variables were explored and the optimum methanol to oil molar ratio, catalyst concentration, reaction temperature, and reaction time were 8:1, 1.2 wt%, 64 °C and 68 min respectively and the corresponding methyl ester yield was 98.39%. The experiment was conducted in triplicate to validate the quadratic model. Results showed average methyl ester yield was 97.78%, which is close to the predicted value, indicating reliability of the model. Results also indicated that using infrared radiation method has many advantageous, such as less energy consumption as a result of deeper penetration of reactant mass which can improve mass transfer between the immiscible reactants in order to improve quality of biodiesel. The physicochemical properties of Reutealis trisperma methyl ester produced under optimum transesterification process variables were also measured and the properties fulfilled the fuel specifications as per ASTM D6751 and EN 14214 standards.

Original languageEnglish
Pages (from-to)520-527
Number of pages8
JournalRenewable Energy
Publication statusPublished - Apr 2019

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment

Fingerprint Dive into the research topics of 'Intensification of Reutealis trisperma biodiesel production using infrared radiation: Simulation, optimisation and validation'. Together they form a unique fingerprint.

  • Cite this