Immobilization of saccharomyces cerevisiae onto cross-linked chitosan coated with magnetic nanoparticles for adsorption of uranium (VI) ions

N. Saifuddin, Sultanbayeva Dinara

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Uranium mining contaminates surface and groundwater and therefore uranium removal from wastewater becomes very important. Among the many bioagents available, the most effective biosorbents is the yeast Saccharomyces Cerevisiae which is widely used in food industries, and multi-functional biopolymer Chitosan. The use of magnetic nanoparticles offers many advantages such as magnetic separation and heavy metal adsorption. Magnetic nanoparticles were obtained using microwave irradiation, and coated with cross-linked chitosan beads. Cross-linked chitosan beads were synthesized by the reacting chitosan with epichlorohydrin (ECH) and grafted with Saccharomyces Cerevisiae under microwave irradiation. Adsorption of uranium (VI) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of uranium (VI) onto cross-linked chitosan were carried out in a batch system. The factors influencing uranium (VI) adsorption were investigated and described in detail, as a function of the parameters such as contact time, pH value, initial uranium (VI) concentration, adsorbent mass, reusability of adsorbent. The Saccharomyces cerevisiae-crosslinked chitosan-magnetic nanoparticle (SC-CTS-ECH-MNP) adsorbent showed best results for the fast adsorption of U (VI) from aqueous solution at initial pH value 4.0. In addition, more than 90% of U (VI) was removed within the first 20 min, and the time required to achieve the adsorption equilibrium was only 110 minutes. Langmuir and Freundlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 72.4 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.

Original languageEnglish
Pages (from-to)249-267
Number of pages19
JournalAdvances in Natural and Applied Sciences
Volume6
Issue number2
Publication statusPublished - 01 Jan 2012

Fingerprint

Uranium
uranium
Chitosan
nanoparticles
chitosan
Immobilization
Yeast
Nanoparticles
Adsorption
Saccharomyces cerevisiae
adsorption
Ions
ions
adsorbents
Adsorbents
Epichlorohydrin
batch systems
Kinetics
kinetics
Microwave irradiation

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Engineering(all)

Cite this

@article{f92e78532e0d457da8949392cee55381,
title = "Immobilization of saccharomyces cerevisiae onto cross-linked chitosan coated with magnetic nanoparticles for adsorption of uranium (VI) ions",
abstract = "Uranium mining contaminates surface and groundwater and therefore uranium removal from wastewater becomes very important. Among the many bioagents available, the most effective biosorbents is the yeast Saccharomyces Cerevisiae which is widely used in food industries, and multi-functional biopolymer Chitosan. The use of magnetic nanoparticles offers many advantages such as magnetic separation and heavy metal adsorption. Magnetic nanoparticles were obtained using microwave irradiation, and coated with cross-linked chitosan beads. Cross-linked chitosan beads were synthesized by the reacting chitosan with epichlorohydrin (ECH) and grafted with Saccharomyces Cerevisiae under microwave irradiation. Adsorption of uranium (VI) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of uranium (VI) onto cross-linked chitosan were carried out in a batch system. The factors influencing uranium (VI) adsorption were investigated and described in detail, as a function of the parameters such as contact time, pH value, initial uranium (VI) concentration, adsorbent mass, reusability of adsorbent. The Saccharomyces cerevisiae-crosslinked chitosan-magnetic nanoparticle (SC-CTS-ECH-MNP) adsorbent showed best results for the fast adsorption of U (VI) from aqueous solution at initial pH value 4.0. In addition, more than 90{\%} of U (VI) was removed within the first 20 min, and the time required to achieve the adsorption equilibrium was only 110 minutes. Langmuir and Freundlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 72.4 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.",
author = "N. Saifuddin and Sultanbayeva Dinara",
year = "2012",
month = "1",
day = "1",
language = "English",
volume = "6",
pages = "249--267",
journal = "Advances in Natural and Applied Sciences",
issn = "1995-0772",
publisher = "American-Eurasian Network for Scientific Information",
number = "2",

}

TY - JOUR

T1 - Immobilization of saccharomyces cerevisiae onto cross-linked chitosan coated with magnetic nanoparticles for adsorption of uranium (VI) ions

AU - Saifuddin, N.

AU - Dinara, Sultanbayeva

PY - 2012/1/1

Y1 - 2012/1/1

N2 - Uranium mining contaminates surface and groundwater and therefore uranium removal from wastewater becomes very important. Among the many bioagents available, the most effective biosorbents is the yeast Saccharomyces Cerevisiae which is widely used in food industries, and multi-functional biopolymer Chitosan. The use of magnetic nanoparticles offers many advantages such as magnetic separation and heavy metal adsorption. Magnetic nanoparticles were obtained using microwave irradiation, and coated with cross-linked chitosan beads. Cross-linked chitosan beads were synthesized by the reacting chitosan with epichlorohydrin (ECH) and grafted with Saccharomyces Cerevisiae under microwave irradiation. Adsorption of uranium (VI) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of uranium (VI) onto cross-linked chitosan were carried out in a batch system. The factors influencing uranium (VI) adsorption were investigated and described in detail, as a function of the parameters such as contact time, pH value, initial uranium (VI) concentration, adsorbent mass, reusability of adsorbent. The Saccharomyces cerevisiae-crosslinked chitosan-magnetic nanoparticle (SC-CTS-ECH-MNP) adsorbent showed best results for the fast adsorption of U (VI) from aqueous solution at initial pH value 4.0. In addition, more than 90% of U (VI) was removed within the first 20 min, and the time required to achieve the adsorption equilibrium was only 110 minutes. Langmuir and Freundlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 72.4 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.

AB - Uranium mining contaminates surface and groundwater and therefore uranium removal from wastewater becomes very important. Among the many bioagents available, the most effective biosorbents is the yeast Saccharomyces Cerevisiae which is widely used in food industries, and multi-functional biopolymer Chitosan. The use of magnetic nanoparticles offers many advantages such as magnetic separation and heavy metal adsorption. Magnetic nanoparticles were obtained using microwave irradiation, and coated with cross-linked chitosan beads. Cross-linked chitosan beads were synthesized by the reacting chitosan with epichlorohydrin (ECH) and grafted with Saccharomyces Cerevisiae under microwave irradiation. Adsorption of uranium (VI) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of uranium (VI) onto cross-linked chitosan were carried out in a batch system. The factors influencing uranium (VI) adsorption were investigated and described in detail, as a function of the parameters such as contact time, pH value, initial uranium (VI) concentration, adsorbent mass, reusability of adsorbent. The Saccharomyces cerevisiae-crosslinked chitosan-magnetic nanoparticle (SC-CTS-ECH-MNP) adsorbent showed best results for the fast adsorption of U (VI) from aqueous solution at initial pH value 4.0. In addition, more than 90% of U (VI) was removed within the first 20 min, and the time required to achieve the adsorption equilibrium was only 110 minutes. Langmuir and Freundlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 72.4 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.

UR - http://www.scopus.com/inward/record.url?scp=84860856039&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84860856039&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84860856039

VL - 6

SP - 249

EP - 267

JO - Advances in Natural and Applied Sciences

JF - Advances in Natural and Applied Sciences

SN - 1995-0772

IS - 2

ER -