Extraction of iron from coal bottom ash by carbon reduction method

Zarina Itam, Nur Liyana Mohd Kamal, Agusril Syamsir, Salmia Beddu, D. Muhammad, Nazirul Mubin Zahari, L. M. Kai, Z. A.A. Hamid, N. A. Razak

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Most of the world's energy production is still mainly achieved by the combustion of coal in power stations. In Malaysia, seven power plants under Tenaga Nasional Berhad Malaysia (TNB) continuously produce around 790 tons of Coal Bottom Ash (CBA) per day. These vast volumes pose a problem in the disposal of the CBA which conventionally is loaded onto ash landfills. Many of the metals and oxides contained by the CBA are environmentally hazardous. When the CBA is disposed in landfills, the metal oxides are leached out and find their way into potable water and into animal and plantations. Disposal of the unused CBA is costly and poses financial disadvantages to power station and to the environment. However, the metals contained inside the CBA may be valuable to various industry if there is a way to extract the metals out of the CBA. This study focused on investigating the extraction of iron from coal bottom ash by the carbon reduction method. The rationale for this process was that by removing and recovering these major constituent elements from the ash, it would be easier to concentrate and isolate the trace elements especially the rare earth elements that are present in the CBA. The chemical composition of the CBA is then determined by x-ray fluorescence. The main mineral phases in CBA were determined to be quartz, aluminium oxide and iron (III) oxide. The experimental results obtained from the carbon reduction method showed that the optimum time for the reduction of iron (III) oxide by carbon from CBA is 30 minutes and the optimum temperature for the reduction is 800°C.

Original languageEnglish
Title of host publicationGreen Design and Manufacture
Subtitle of host publicationAdvanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018
EditorsMuhammad Faheem Bin Mohd Tahir, Romisuhani Ahmad, Mohd Nasir Bin Mat Saad, Mohd Fathullah Bin Ghazli, Mohd Mustafa Al-Bakri Abdullah, Shayfull Zamree Bin Abd. Rahim, Liyana Binti Jamaludin
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735417526
DOIs
Publication statusPublished - 09 Nov 2018
Event4th International Conference on Green Design and Manufacture 2018, IConGDM 2018 - Ho Chi Minh, Viet Nam
Duration: 29 Apr 201830 Apr 2018

Publication series

NameAIP Conference Proceedings
Volume2030
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other4th International Conference on Green Design and Manufacture 2018, IConGDM 2018
CountryViet Nam
CityHo Chi Minh
Period29/04/1830/04/18

Fingerprint

ashes
coal
iron
carbon
landfills
Malaysia
disposal
oxides
stations
potable water
metals
x ray fluorescence
power plants
trace elements
metal oxides
animals
chemical composition
rare earth elements
quartz
aluminum oxides

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

Itam, Z., Mohd Kamal, N. L., Syamsir, A., Beddu, S., Muhammad, D., Zahari, N. M., ... Razak, N. A. (2018). Extraction of iron from coal bottom ash by carbon reduction method. In M. F. B. M. Tahir, R. Ahmad, M. N. B. M. Saad, M. F. B. Ghazli, M. M. A-B. Abdullah, S. Z. B. A. Rahim, & L. B. Jamaludin (Eds.), Green Design and Manufacture: Advanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018 [020261] (AIP Conference Proceedings; Vol. 2030). American Institute of Physics Inc.. https://doi.org/10.1063/1.5066902
Itam, Zarina ; Mohd Kamal, Nur Liyana ; Syamsir, Agusril ; Beddu, Salmia ; Muhammad, D. ; Zahari, Nazirul Mubin ; Kai, L. M. ; Hamid, Z. A.A. ; Razak, N. A. / Extraction of iron from coal bottom ash by carbon reduction method. Green Design and Manufacture: Advanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018. editor / Muhammad Faheem Bin Mohd Tahir ; Romisuhani Ahmad ; Mohd Nasir Bin Mat Saad ; Mohd Fathullah Bin Ghazli ; Mohd Mustafa Al-Bakri Abdullah ; Shayfull Zamree Bin Abd. Rahim ; Liyana Binti Jamaludin. American Institute of Physics Inc., 2018. (AIP Conference Proceedings).
@inproceedings{a0f0999b96ac4d36be9bddf67b00bbbe,
title = "Extraction of iron from coal bottom ash by carbon reduction method",
abstract = "Most of the world's energy production is still mainly achieved by the combustion of coal in power stations. In Malaysia, seven power plants under Tenaga Nasional Berhad Malaysia (TNB) continuously produce around 790 tons of Coal Bottom Ash (CBA) per day. These vast volumes pose a problem in the disposal of the CBA which conventionally is loaded onto ash landfills. Many of the metals and oxides contained by the CBA are environmentally hazardous. When the CBA is disposed in landfills, the metal oxides are leached out and find their way into potable water and into animal and plantations. Disposal of the unused CBA is costly and poses financial disadvantages to power station and to the environment. However, the metals contained inside the CBA may be valuable to various industry if there is a way to extract the metals out of the CBA. This study focused on investigating the extraction of iron from coal bottom ash by the carbon reduction method. The rationale for this process was that by removing and recovering these major constituent elements from the ash, it would be easier to concentrate and isolate the trace elements especially the rare earth elements that are present in the CBA. The chemical composition of the CBA is then determined by x-ray fluorescence. The main mineral phases in CBA were determined to be quartz, aluminium oxide and iron (III) oxide. The experimental results obtained from the carbon reduction method showed that the optimum time for the reduction of iron (III) oxide by carbon from CBA is 30 minutes and the optimum temperature for the reduction is 800°C.",
author = "Zarina Itam and {Mohd Kamal}, {Nur Liyana} and Agusril Syamsir and Salmia Beddu and D. Muhammad and Zahari, {Nazirul Mubin} and Kai, {L. M.} and Hamid, {Z. A.A.} and Razak, {N. A.}",
year = "2018",
month = "11",
day = "9",
doi = "10.1063/1.5066902",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Tahir, {Muhammad Faheem Bin Mohd} and Romisuhani Ahmad and Saad, {Mohd Nasir Bin Mat} and Ghazli, {Mohd Fathullah Bin} and Abdullah, {Mohd Mustafa Al-Bakri} and Rahim, {Shayfull Zamree Bin Abd.} and Jamaludin, {Liyana Binti}",
booktitle = "Green Design and Manufacture",

}

Itam, Z, Mohd Kamal, NL, Syamsir, A, Beddu, S, Muhammad, D, Zahari, NM, Kai, LM, Hamid, ZAA & Razak, NA 2018, Extraction of iron from coal bottom ash by carbon reduction method. in MFBM Tahir, R Ahmad, MNBM Saad, MFB Ghazli, MMA-B Abdullah, SZBA Rahim & LB Jamaludin (eds), Green Design and Manufacture: Advanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018., 020261, AIP Conference Proceedings, vol. 2030, American Institute of Physics Inc., 4th International Conference on Green Design and Manufacture 2018, IConGDM 2018, Ho Chi Minh, Viet Nam, 29/04/18. https://doi.org/10.1063/1.5066902

Extraction of iron from coal bottom ash by carbon reduction method. / Itam, Zarina; Mohd Kamal, Nur Liyana; Syamsir, Agusril; Beddu, Salmia; Muhammad, D.; Zahari, Nazirul Mubin; Kai, L. M.; Hamid, Z. A.A.; Razak, N. A.

Green Design and Manufacture: Advanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018. ed. / Muhammad Faheem Bin Mohd Tahir; Romisuhani Ahmad; Mohd Nasir Bin Mat Saad; Mohd Fathullah Bin Ghazli; Mohd Mustafa Al-Bakri Abdullah; Shayfull Zamree Bin Abd. Rahim; Liyana Binti Jamaludin. American Institute of Physics Inc., 2018. 020261 (AIP Conference Proceedings; Vol. 2030).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Extraction of iron from coal bottom ash by carbon reduction method

AU - Itam, Zarina

AU - Mohd Kamal, Nur Liyana

AU - Syamsir, Agusril

AU - Beddu, Salmia

AU - Muhammad, D.

AU - Zahari, Nazirul Mubin

AU - Kai, L. M.

AU - Hamid, Z. A.A.

AU - Razak, N. A.

PY - 2018/11/9

Y1 - 2018/11/9

N2 - Most of the world's energy production is still mainly achieved by the combustion of coal in power stations. In Malaysia, seven power plants under Tenaga Nasional Berhad Malaysia (TNB) continuously produce around 790 tons of Coal Bottom Ash (CBA) per day. These vast volumes pose a problem in the disposal of the CBA which conventionally is loaded onto ash landfills. Many of the metals and oxides contained by the CBA are environmentally hazardous. When the CBA is disposed in landfills, the metal oxides are leached out and find their way into potable water and into animal and plantations. Disposal of the unused CBA is costly and poses financial disadvantages to power station and to the environment. However, the metals contained inside the CBA may be valuable to various industry if there is a way to extract the metals out of the CBA. This study focused on investigating the extraction of iron from coal bottom ash by the carbon reduction method. The rationale for this process was that by removing and recovering these major constituent elements from the ash, it would be easier to concentrate and isolate the trace elements especially the rare earth elements that are present in the CBA. The chemical composition of the CBA is then determined by x-ray fluorescence. The main mineral phases in CBA were determined to be quartz, aluminium oxide and iron (III) oxide. The experimental results obtained from the carbon reduction method showed that the optimum time for the reduction of iron (III) oxide by carbon from CBA is 30 minutes and the optimum temperature for the reduction is 800°C.

AB - Most of the world's energy production is still mainly achieved by the combustion of coal in power stations. In Malaysia, seven power plants under Tenaga Nasional Berhad Malaysia (TNB) continuously produce around 790 tons of Coal Bottom Ash (CBA) per day. These vast volumes pose a problem in the disposal of the CBA which conventionally is loaded onto ash landfills. Many of the metals and oxides contained by the CBA are environmentally hazardous. When the CBA is disposed in landfills, the metal oxides are leached out and find their way into potable water and into animal and plantations. Disposal of the unused CBA is costly and poses financial disadvantages to power station and to the environment. However, the metals contained inside the CBA may be valuable to various industry if there is a way to extract the metals out of the CBA. This study focused on investigating the extraction of iron from coal bottom ash by the carbon reduction method. The rationale for this process was that by removing and recovering these major constituent elements from the ash, it would be easier to concentrate and isolate the trace elements especially the rare earth elements that are present in the CBA. The chemical composition of the CBA is then determined by x-ray fluorescence. The main mineral phases in CBA were determined to be quartz, aluminium oxide and iron (III) oxide. The experimental results obtained from the carbon reduction method showed that the optimum time for the reduction of iron (III) oxide by carbon from CBA is 30 minutes and the optimum temperature for the reduction is 800°C.

UR - http://www.scopus.com/inward/record.url?scp=85057244597&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85057244597&partnerID=8YFLogxK

U2 - 10.1063/1.5066902

DO - 10.1063/1.5066902

M3 - Conference contribution

T3 - AIP Conference Proceedings

BT - Green Design and Manufacture

A2 - Tahir, Muhammad Faheem Bin Mohd

A2 - Ahmad, Romisuhani

A2 - Saad, Mohd Nasir Bin Mat

A2 - Ghazli, Mohd Fathullah Bin

A2 - Abdullah, Mohd Mustafa Al-Bakri

A2 - Rahim, Shayfull Zamree Bin Abd.

A2 - Jamaludin, Liyana Binti

PB - American Institute of Physics Inc.

ER -

Itam Z, Mohd Kamal NL, Syamsir A, Beddu S, Muhammad D, Zahari NM et al. Extraction of iron from coal bottom ash by carbon reduction method. In Tahir MFBM, Ahmad R, Saad MNBM, Ghazli MFB, Abdullah MMA-B, Rahim SZBA, Jamaludin LB, editors, Green Design and Manufacture: Advanced and Emerging Applications: Proceeding of the 4th International Conference on Green Design and Manufacture 2018. American Institute of Physics Inc. 2018. 020261. (AIP Conference Proceedings). https://doi.org/10.1063/1.5066902