Evaluation of a large eddy simulation on thermal boundary condition in underground car park

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Both Fire Dynamic Simulator (FDS) and Smokeview (SMV) were adopted to predict the heat distribution and the smoke propagation. The data are important for determining the required tenability limit in an underground car park during fire. The credibility of FDS result depends heavily on the numerical setting and the imposed boundary conditions. The present study explored the influence of different thermal boundary conditions, i.e. adiabatic and constant wall temperature boundary conditions. The gridindependent Heat Release Rate (HRR) and the vertical temperature profiles on some selected locations were firstly obtained. It was found that the R2 of the constant temperature thermal boundary condition was the highest (89.4%). Meanwhile, the R2 of the adiabatic thermal boundary condition was 87.5%. Therefore, the constant wall temperature boundary condition was adopted for subsequent analysis. On the other hand, the temperature distribution was dependent on the imposed thermal boundary condition as well. For adiabatic condition, the smoke took lesser time to reach the floor. However, for constant temperature boundary condition, the smoke layer remained at the upper level and the smoke concentration was low near the end wall. Also, the predicted critical velocity for the case of constant temperature boundary condition was much lower than that of adiabatic boundary condition. In general, lower critical velocity indicates that the hot gases would reside at the upper level longer.

Original languageEnglish
Pages (from-to)17-24
Number of pages8
JournalJournal of Advanced Research in Fluid Mechanics and Thermal Sciences
Volume48
Issue number1
Publication statusPublished - 01 Aug 2018

Fingerprint

Large eddy simulation
Railroad cars
Boundary conditions
Smoke
Fires
Temperature
Simulators
Hot Temperature
Temperature distribution
Gases

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes

Cite this

@article{4a04edc24a4b43b69704bd05b285a3c9,
title = "Evaluation of a large eddy simulation on thermal boundary condition in underground car park",
abstract = "Both Fire Dynamic Simulator (FDS) and Smokeview (SMV) were adopted to predict the heat distribution and the smoke propagation. The data are important for determining the required tenability limit in an underground car park during fire. The credibility of FDS result depends heavily on the numerical setting and the imposed boundary conditions. The present study explored the influence of different thermal boundary conditions, i.e. adiabatic and constant wall temperature boundary conditions. The gridindependent Heat Release Rate (HRR) and the vertical temperature profiles on some selected locations were firstly obtained. It was found that the R2 of the constant temperature thermal boundary condition was the highest (89.4{\%}). Meanwhile, the R2 of the adiabatic thermal boundary condition was 87.5{\%}. Therefore, the constant wall temperature boundary condition was adopted for subsequent analysis. On the other hand, the temperature distribution was dependent on the imposed thermal boundary condition as well. For adiabatic condition, the smoke took lesser time to reach the floor. However, for constant temperature boundary condition, the smoke layer remained at the upper level and the smoke concentration was low near the end wall. Also, the predicted critical velocity for the case of constant temperature boundary condition was much lower than that of adiabatic boundary condition. In general, lower critical velocity indicates that the hot gases would reside at the upper level longer.",
author = "Tharima, {Ahmad Faiz} and Yusoff, {Mohd Zamri} and Rahman, {Md Mujibur}",
year = "2018",
month = "8",
day = "1",
language = "English",
volume = "48",
pages = "17--24",
journal = "Journal of Advanced Research in Fluid Mechanics and Thermal Sciences",
issn = "2289-7879",
publisher = "Penerbit Akademia Baru",
number = "1",

}

TY - JOUR

T1 - Evaluation of a large eddy simulation on thermal boundary condition in underground car park

AU - Tharima, Ahmad Faiz

AU - Yusoff, Mohd Zamri

AU - Rahman, Md Mujibur

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Both Fire Dynamic Simulator (FDS) and Smokeview (SMV) were adopted to predict the heat distribution and the smoke propagation. The data are important for determining the required tenability limit in an underground car park during fire. The credibility of FDS result depends heavily on the numerical setting and the imposed boundary conditions. The present study explored the influence of different thermal boundary conditions, i.e. adiabatic and constant wall temperature boundary conditions. The gridindependent Heat Release Rate (HRR) and the vertical temperature profiles on some selected locations were firstly obtained. It was found that the R2 of the constant temperature thermal boundary condition was the highest (89.4%). Meanwhile, the R2 of the adiabatic thermal boundary condition was 87.5%. Therefore, the constant wall temperature boundary condition was adopted for subsequent analysis. On the other hand, the temperature distribution was dependent on the imposed thermal boundary condition as well. For adiabatic condition, the smoke took lesser time to reach the floor. However, for constant temperature boundary condition, the smoke layer remained at the upper level and the smoke concentration was low near the end wall. Also, the predicted critical velocity for the case of constant temperature boundary condition was much lower than that of adiabatic boundary condition. In general, lower critical velocity indicates that the hot gases would reside at the upper level longer.

AB - Both Fire Dynamic Simulator (FDS) and Smokeview (SMV) were adopted to predict the heat distribution and the smoke propagation. The data are important for determining the required tenability limit in an underground car park during fire. The credibility of FDS result depends heavily on the numerical setting and the imposed boundary conditions. The present study explored the influence of different thermal boundary conditions, i.e. adiabatic and constant wall temperature boundary conditions. The gridindependent Heat Release Rate (HRR) and the vertical temperature profiles on some selected locations were firstly obtained. It was found that the R2 of the constant temperature thermal boundary condition was the highest (89.4%). Meanwhile, the R2 of the adiabatic thermal boundary condition was 87.5%. Therefore, the constant wall temperature boundary condition was adopted for subsequent analysis. On the other hand, the temperature distribution was dependent on the imposed thermal boundary condition as well. For adiabatic condition, the smoke took lesser time to reach the floor. However, for constant temperature boundary condition, the smoke layer remained at the upper level and the smoke concentration was low near the end wall. Also, the predicted critical velocity for the case of constant temperature boundary condition was much lower than that of adiabatic boundary condition. In general, lower critical velocity indicates that the hot gases would reside at the upper level longer.

UR - http://www.scopus.com/inward/record.url?scp=85051674285&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85051674285&partnerID=8YFLogxK

M3 - Article

VL - 48

SP - 17

EP - 24

JO - Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

JF - Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

SN - 2289-7879

IS - 1

ER -