A numerical study of laminar forced convection flow of Al2O 3-water nanofluid in triangular-corrugated channel

M. A. Ahmed, M. Z. Yusoff, N. H. Shuaib, K. C. Ng

Research output: Contribution to journalConference article

Abstract

In this paper, laminar forced convection flow of Al2O 3-water nanofluid in triangular-corrugated channel is numerically studied. The governing mass, momentum and energy equations in body-fitted coordinates are solved using finite volume method. Reynolds number and nanoparticle volume fractions are in the ranges of 100-800 and 0-5%, respectively. The effect of Reynolds number, nanoparticles volume fraction and nanoparticles diameter on the flow and thermal characteristics are examined. The results indicate that the Nusselt number increased as Reynolds number and nanopartiles volume fraction increased but the pressure drop increased as well. Also, Nusselt number increased as the nanoparticle diameter decreased, while there is no effect of nanoparticle diameter on the pressure drop.

Original languageEnglish
Article number012149
JournalIOP Conference Series: Earth and Environmental Science
Volume16
Issue number1
DOIs
Publication statusPublished - 01 Jan 2013
Event26th IAHR Symposium on Hydraulic Machinery and Systems - Beijing, China
Duration: 19 Aug 201223 Aug 2012

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Environmental Science(all)
  • Earth and Planetary Sciences(all)

Cite this