A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

Research output: Contribution to journalConference article

1 Citation (Scopus)

Abstract

This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

Original languageEnglish
Article number012052
JournalIOP Conference Series: Earth and Environmental Science
Volume16
Issue number1
DOIs
Publication statusPublished - 01 Jan 2013
Event26th IAHR Symposium on Hydraulic Machinery and Systems - Beijing, China
Duration: 19 Aug 201223 Aug 2012

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Environmental Science(all)
  • Earth and Planetary Sciences(all)

Cite this