A new methodology for technical losses estimation of radial distribution feeder

Khairul Anwar Ibrahim, Mau Teng Au, Chin Kim Gan

Research output: Contribution to journalArticle


Power distribution feeders is one of the key contributors of technical losses (TL) as it is typically large in numbers and scattered over large geographic areas. Traditional approach using classical formulation or time series load flow simulations to determine TL in each and every feeder and feeder sections in all distribution network require is an expensive exercise as it requires extensive modelling of the feeders and voluminous data. This paper presents a simple analytical approach to estimate monthly TL of a radial distribution feeder using analytical approach. TL for each feeder sections are evaluated on a monthly basis based on estimation of the load profile of the load points, peak power loss characteristics and loss factor. Total feeder TL are then estimated as the sum of all TL contributed by each feeder section. The developed models and procedure have been demonstrated through case studies performed on three (3) typical and representative feeders characterized by the different area served, number of feeder sections, load distribution and feeder length. The results shows close agreement (less than 5% differences) when compared with time series load flow simulations. With this model, the approach could be extended and applied to estimate TL of any radial distribution feeders of different configurations and characteristics.

Original languageEnglish
Pages (from-to)1126-1135
Number of pages10
JournalIndonesian Journal of Electrical Engineering and Computer Science
Issue number3
Publication statusPublished - 01 Jan 2019

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Information Systems
  • Hardware and Architecture
  • Computer Networks and Communications
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A new methodology for technical losses estimation of radial distribution feeder'. Together they form a unique fingerprint.

  • Cite this