A genetic algorithm based fuzzy inference system for pattern classification and rule extraction

Shen Yuong Wong, Keem Siah Yap, Xiaochao Li

Research output: Contribution to journalArticle

Abstract

Setting fuzzy rules is one of the paramount techniques in the design of a fuzzy system. For a simple system, fuzzy if-then rules are usually derived from the human experts. However, in the event of having multiple variables coupled with a few features, the classification problem will be getting more sophisticated, as a result human expert may not be able to derive proper rules. This paper presents a genetic-algorithm-based fuzzy inference system for extracting highly comprehensible fuzzy rules to be implemented in human practices without detailed computation (hereafter denoted as GA-FIS). The impetus for developing a new and efficient GA-FIS model arises from the need of constructing fuzzy rules directly from raw data sets that combines good approximation and classification properties with compactness and transparency. Therefore, our proposed GA-FIS method will first define the membership functions with logical interpretation which is amendable by domain experts to human understanding, and then genetic algorithm serves as an optimization tool to construct the best combination of rules in fuzzy inference system that can achieve higher classification accuracy and gain better interpretability. The proposed approach is applied to various benchmark and real world problems and the results show its validity.

Original languageEnglish
Pages (from-to)361-368
Number of pages8
JournalInternational Journal of Engineering and Technology(UAE)
Volume7
Issue number4
DOIs
Publication statusPublished - 01 Jan 2018

Fingerprint

Fuzzy inference
Fuzzy rules
Pattern recognition
Genetic algorithms
Fuzzy systems
Membership functions
Benchmarking
Transparency

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Computer Science (miscellaneous)
  • Environmental Engineering
  • Chemical Engineering(all)
  • Engineering(all)
  • Hardware and Architecture

Cite this

@article{18ea91c03c184cc8935937e040a592cd,
title = "A genetic algorithm based fuzzy inference system for pattern classification and rule extraction",
abstract = "Setting fuzzy rules is one of the paramount techniques in the design of a fuzzy system. For a simple system, fuzzy if-then rules are usually derived from the human experts. However, in the event of having multiple variables coupled with a few features, the classification problem will be getting more sophisticated, as a result human expert may not be able to derive proper rules. This paper presents a genetic-algorithm-based fuzzy inference system for extracting highly comprehensible fuzzy rules to be implemented in human practices without detailed computation (hereafter denoted as GA-FIS). The impetus for developing a new and efficient GA-FIS model arises from the need of constructing fuzzy rules directly from raw data sets that combines good approximation and classification properties with compactness and transparency. Therefore, our proposed GA-FIS method will first define the membership functions with logical interpretation which is amendable by domain experts to human understanding, and then genetic algorithm serves as an optimization tool to construct the best combination of rules in fuzzy inference system that can achieve higher classification accuracy and gain better interpretability. The proposed approach is applied to various benchmark and real world problems and the results show its validity.",
author = "Wong, {Shen Yuong} and Yap, {Keem Siah} and Xiaochao Li",
year = "2018",
month = "1",
day = "1",
doi = "10.14419/ijet.v7i4.35.22762",
language = "English",
volume = "7",
pages = "361--368",
journal = "International Journal of Engineering and Technology(UAE)",
issn = "2227-524X",
publisher = "Science Publishing Corporation Inc",
number = "4",

}

A genetic algorithm based fuzzy inference system for pattern classification and rule extraction. / Wong, Shen Yuong; Yap, Keem Siah; Li, Xiaochao.

In: International Journal of Engineering and Technology(UAE), Vol. 7, No. 4, 01.01.2018, p. 361-368.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A genetic algorithm based fuzzy inference system for pattern classification and rule extraction

AU - Wong, Shen Yuong

AU - Yap, Keem Siah

AU - Li, Xiaochao

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Setting fuzzy rules is one of the paramount techniques in the design of a fuzzy system. For a simple system, fuzzy if-then rules are usually derived from the human experts. However, in the event of having multiple variables coupled with a few features, the classification problem will be getting more sophisticated, as a result human expert may not be able to derive proper rules. This paper presents a genetic-algorithm-based fuzzy inference system for extracting highly comprehensible fuzzy rules to be implemented in human practices without detailed computation (hereafter denoted as GA-FIS). The impetus for developing a new and efficient GA-FIS model arises from the need of constructing fuzzy rules directly from raw data sets that combines good approximation and classification properties with compactness and transparency. Therefore, our proposed GA-FIS method will first define the membership functions with logical interpretation which is amendable by domain experts to human understanding, and then genetic algorithm serves as an optimization tool to construct the best combination of rules in fuzzy inference system that can achieve higher classification accuracy and gain better interpretability. The proposed approach is applied to various benchmark and real world problems and the results show its validity.

AB - Setting fuzzy rules is one of the paramount techniques in the design of a fuzzy system. For a simple system, fuzzy if-then rules are usually derived from the human experts. However, in the event of having multiple variables coupled with a few features, the classification problem will be getting more sophisticated, as a result human expert may not be able to derive proper rules. This paper presents a genetic-algorithm-based fuzzy inference system for extracting highly comprehensible fuzzy rules to be implemented in human practices without detailed computation (hereafter denoted as GA-FIS). The impetus for developing a new and efficient GA-FIS model arises from the need of constructing fuzzy rules directly from raw data sets that combines good approximation and classification properties with compactness and transparency. Therefore, our proposed GA-FIS method will first define the membership functions with logical interpretation which is amendable by domain experts to human understanding, and then genetic algorithm serves as an optimization tool to construct the best combination of rules in fuzzy inference system that can achieve higher classification accuracy and gain better interpretability. The proposed approach is applied to various benchmark and real world problems and the results show its validity.

UR - http://www.scopus.com/inward/record.url?scp=85059233832&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85059233832&partnerID=8YFLogxK

U2 - 10.14419/ijet.v7i4.35.22762

DO - 10.14419/ijet.v7i4.35.22762

M3 - Article

AN - SCOPUS:85059233832

VL - 7

SP - 361

EP - 368

JO - International Journal of Engineering and Technology(UAE)

JF - International Journal of Engineering and Technology(UAE)

SN - 2227-524X

IS - 4

ER -